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Abstract

A weakly nonlinear theory is developed to study the interaction of TS waves and Dean

vortices in curved channel flow. The predictions obtained from the theory agree well with

results obtained from direct numerical simulations of curved channel flow, especially for

low amplitude disturbances. At low Reynolds numbers the wave interaction is generally

stabilizing to both disturbances, though as the Reynolds number increases, many linearly

unstable TS waves are further destabilized by the presence of Dean vortices.
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I. Introduction

The study of incompressible curved channel flow can illuminate some important issues deal-

ing with laminar-turbulent transition. The streamwise curvature of the flow induces an

instability resulting in longitudinal vortices (hereafter referred to as Dean vortices [1]). For

the case in which the gap between the walls is small relative to the radius of curvature, Reid

[2] described two approximate methods which both showed that the vortices first become

unstable when the Dean number (De = 2Re_, where Re = "U';h*/v is the Reynolds

number, U---_ is the bulk velocity, d* is the channel width, h* = d*/2 is the channel half-width,

r_ is the inner wall radius, and v is the kinematic viscosity) exceeds a value of about 36.

These vortical structures have been found experimentally by Ligrani and Niver [3]. The

linear and nonlinear properties of these axisymmetric vortices as well as their transitions

into two distinct types of wavy vortices have been well documented in the direct numeri-

cal simulations and weakly nonlinear studies of Finlay, Keller, and Ferziger [4]. For more

mildly curved channels than they studied, the minimum Reynolds number for instability of

the Dean vortices is comparable with that for two-dimensional (2D) Tollmien-Schlichting

(TS) waves. In this regime, Gibson and Cook [5] showed that oblique waves are never the

dominant linear disturbance. Hence a study of the nonlinear interactions between 2D TS

waves and the streamwise oriented Dean vortices can be meaningfully conducted.

Daudpota, Hall and Zang [6] (hereafter referred to as DHZ) developed a weakly nonlinear

interaction theory to study the interaction of Dean vortices and TS waves in curved chan-

nels. They employed a multiple scale version of the Stuart [7] and Watson [8] approach to

derive two coupled Landau equations for the perturbation amplitudes of Dean vortices and

TS waves. A comparison of their theory's predictions with the results of direct numerical

simulation [9] suggests that their results are in error with respect to the influence of the

TS wave on the Dean vortex. The resolution of this discrepancy is the major motivation

for undertaking this work. In section II. we present a slightly different formulation of a

weakly nonlinear interaction theory and describe how the resulting equations are solved.

The current approach is based on the work by Herbert [10, 11], We compare some aspects

of this approach with that used by DHZ. In section III. we report some results of the inter-

action theory while in section IV. we compare specific cases with results of direct numerical

simulation. Finally in section V. we draw conclusions.



II. Mathematical Formulation

A. The Basic Equations

The incompressible Navier-Stokes equations in cylindrical coordinates (r*, O, z*) are written

as:

l O(T'u,') l OUe" ou,*
+ + - o (1)T* 0T* r* 00 Oz*

OUr* (V* V*)U," 1Ue*2 - lOP* ( U,* 20Uo*)0t----T-+ " - r* p* 0T* + u* V*SU, * r* 2 r .2 06 (2)

OUo* (fr* Uo*U,* 1 OF* ( *o---v-+ _')u_'+ - -T'--T+T*' O0 ] (3)T" T.p. oo + ," v"uo" us 2 ou,"_
1 OP*

OU,*ot.____.;_+ (V* • V*)U,* - p* Oz* + u*V*'U,* (4)

where:

0 Uo*O 0
if*. _* = u,*g;:_.+ ---- + u,*-- (s )r* O0 Oz*

V.2 _ 1 0 (._0 _ 1 0' 02
r* 0T* \ OT*jT + r,---'_O0----T + Oz,-----_ (6)

and p* and v* represent the constant density and kinematic viscosity respectively. The

asterisks indicate dimensional quantities. The geometry of the problem of azimuthal flow

between infinite concentric walls of outer radius r: and inner radius r_ is illustrated in Figure

1. The wall boundary conditions require that:

Ur* = Uo* = U,* = O, at T* = r*, r:. (7)

A solution to the equations gives (U, , Uo*, U *" . , P*) as:

U0*

Here U* is the bulk velocity and

)
Op*U "_2f f(r)'/rdr

(8)

where:

f(r*) = D* (r* logr* + C'r*+ E*/r*)

E* • • 2 ,2= --(T_To)/(To - T_')log_
D* = -2/(r*_ + E*/h*logT1).

(o)

(lo)
(11)
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The quantity r_ = (r; + r_)/2 is the centerline radius and the ratio 7/= r_/r*o describes the

channel curvature•

We nondimensionalize all spatial coordinates with the channel half-width, velocities with

the bulk velocity, and pressure with p._--;2. The temporal scale is h*/-U --'_. The Reynolds

number is defined as

Re = -_h*/v*.

The nondimensional equations are easily obtained from the dimensional ones by replacing all

starred quantities with their corresponding nondimensional unstarred ones and noting that

p = 1, h = 1, and v = 1/Re. The expression 1 - 7/appears often below and is denoted by A.

When A = A= -- 2.179 x 10 -s the minimum Reynolds number for instability of TS waves is

the same as that for Dean vortices (see Gibson and Cook[5]).

We follow closely the perturbation method introduced by Herbert [10, 11], extending it

to the case of interacting disturbances. The steady solution is perturbed such that

I Urf(r)+ue

U=

te f f2/rdr + p

(12)

where ur, ue, u,, and p are perturbation quantities. Substituting the perturbations into the

nondimensionalized Navier-Stokes equations, subtracting the steady flow component, and

rearranging gives:

1 8uo 8u,1 8 (rut) + _m + __ =
r 8r r 80 8z

8u_ 8p 1 2 f ue + f 8u, 1 ( u, 2 aue8--7"+ 8r r r 80 l_ V2u"- _- _-_-)

• , 2 (14)

1 8p fu, f 8

8u, 8p f 8u, 1
v2,.,,= - (16)8--l[-+ _-zz+ r 00 Re

o (13)

where:

8 ue 8 8
V . 9 = u, 8--r + ---- +r80 u=-_z (17)

V2 18(8) 18 2 02rot r-_r + r-_ 80---_+ -O-'_z2 (18)

The entire flow is assumed to be periodic in the azimuthal (streamwise) and axial (spanwise)

directions; the solution evolves in time. In addition the total pressure gradient is kept

constant.
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B. Fourier Expansions

The linearized disturbance equations are obtained by setting the right hand sides of Equa-

tions 13-16 equal to zero. A solution to the equations for a 2D TS wave can be written
as:

ue = _el'°(r,t)
0

_l'°(r,t)

exp i(a6 -- -y(t)). (19)

Here a is real and represents the azimuthal wavenumber while _(t) = got is a real function

defining the phase. Any growth or decay of the TS wave is expressed in terms of an amplitude
parameter such that:

where

,_ _,o(r,t)_ (_ ,.o.0.o(_))ffol'°(or't)I = A(t) del'°'°'°(r)o
¢.o(_,t ) / _1.o.o.o(_)

(20)

dA

d----_= ao,oA (21)

and ao,o is the linear growth rate. The apparently superfluous superscripts and subscripts

are included here for consistency with the notation used later. A convenient normalization

for this problem is

[Srl'°(rc, t)[ = A(t) (22)

where rc is the channel centerline. We take

drl'°'°'°(rc) = 1, (23)

thus fixing the amplitude and phase of the TS wave.

In a similar manner, one can write the solution for the primary Dean vortex mode as:

_0 50°''(r, _)
= _O,l(r,t) expi(flz--¢(t)), (24)

_°,'(,,t)

where fl is the real axial wavenumber and ¢'(t) = hot = 0 indicates that the linear Dean

disturbance is steady. We also write

/ ol r /_ o,,(,,t) |d o,o,,,o(,)
_,zO,l(_,_ ) = B(]_) /_, o,o,l,O(r)

_o,,(_,_) \ _o,o,,,o(_)

(25)



where

The normalization is chosen such that:

or in this case,

dB

= bo.oB. (26)

I_°,_(,-=,t)l= B(t), (27)

_°'°'l'°(ro) = 1. (28)
It is conceivable that a particularly inauspicious choice of the parameters Re , )_, and

wavenumbers might lead to d,_'°'°'°(rc) = 0 or d_°'°'_'°(r_) = 0 and hence the normaliza-

tion used in either Equation 22 or 27 could fail. Such an event would lead to overflow errors

in the numerical procedure and an alternative normalization could be used. Herbert [11]

discusses integral normalizations which are more robust but somewhat more complicated to

implement. In practice we have never experienced any problems with the normalizations

in Equations 22 and 27. We attribute this to the fact that the amplitudes of the radial

velocities of the dominant TS waves and Dean vortices do not have local minima near the

channel center.

When the nonlinear terms (the right hand sides of Equations 13-16) are included, the

disturbances can interact with themselves, the mean flow, each other and all their relevant

complex conjugates. This results in the generation of harmonics, mean flow distortions,

and various corrections to the fundamental disturbances. Hence it is natural to expand the

perturbation variables in a double Fourier series:

/ ff ,,,,(r, t) expin(aO-_(t))expil(flz-((t)). (29)?AZ _----- -- oo

p \ _-,'(_, t)

C. Amplitude Ezpansion

The system of nonlinear partial differential equations obtained by substituting Equation 29

into Equations 13- 16 are coupled and difficult to solve efficiently. We seek a solution by

expanding in the amplitude parameters A(t) and B(t) about the linear solutions given by

Equations 19 and 24. The solutions will reflect the deviations from linear behavior for finite,

but sufficiently small amplitudes A and B. In this context, all harmonics of the primary

disturbances are considered to be forced. Since the linear TS and Dean solutions are O(A)

and O(B) respectively, their first harmonics and cross terms will be O(A2), O(B2), and

O(AB). Higher order harmonics and cross terms will be O(A"Bt), hence it is reasonable to

let:

a_"'% t) )
ao",_(r,t)
_,",t(r, t)
i_",_(r,t)

_- rt,l

-- AI'_IBl'Il_t.,t(r,t)[ (30)

t,V"(,,,t))



where all double tilde terms are O(1) except for those with n = l = 0. Heuristically, one

can see that the exception with the n = l = 0 term comes about from the fact that the

lowest order mean flow distortions are generated from the product of either TS or Dean

fundamental disturbances with their respective complex conjugates. Since the fundamental

disturbances are O(A) and O(B), the product terms which generate n = l = 0 are O(A 2)

and O(B 2) respectively. Substitution of the representation in Equation 30 into Equation 29

gives:

Uz

P

] - nil • .

{ ,z, (,.,t)
O0 O0 ! " I'i,_ . .

/_° (r,t]E E . =.,,.

\ p (r,t)

] Al'q(t)Bltl(t) exp in(aO - 7(t)) exp il(flz - _(t)).
(31)

Since we seek solutions which are small deviations from the linear behavior, we now expand

the double tilde representations in sums which are the products of ascending powers of the

amplitude functions with coefficients which are strictly functions of the radial coordinate.

In the limit as A _ 0 and B _ 0, the solutions tend towards the linear results. Because of

the invariance of the original equations and boundary conditions with respect to arbitrary

translation in the streamwise and spanwise directions and the assumption of periodicity of

the solutions in these directions, only even powers of A and B are needed [12]. Hence,

nil

{ / o,m,,,%)

- n,l ----
[u, (r,t)[ _-_ _-} d_,,,,,,.k(r ) A2"'(t)B2J'(t). (32)

\ ) ==0k=0

By substitution into Equation 31 one obtains the full representation of the perturbation
variables:

,',=-_¢,-,,=ot=-. - / d"*'m't'k(r) I A2"*+l"l(t)B2"+ltl(t)

exp in(_O - Z(t)) exp it(#_ - ¢(t)). (33)

In order that the wall boundary conditions be satisfied at all orders of approximation, we

require:

a0_,_',l,_(_) =

for all combinations of n, m, I, and k.

at r = ri, ro (34)

The time derivatives A/A, B/B, ?, and ¢; are also expanded in terms of A _ and B 2 such

that:

A oo oo

A E E -2,,, n2,- = a..,k_ n (35)
m=O k=O



B y]_ _'L A2,,_k (36)
m=O k=O

co 0(3

,_ = ___ y]_ g,_,kA2mB 2k (37)
m--O k=O

oc oo

4 E (38)
rn----O k----0

Equations 35 and 36 are the coupled Landau

disturbances. The purpose of the remainder

coei_cientsa.,,kand bm,k.

equations which describe the growth of the

of this section is to determine the Landau

D. Solution Method

The solution expansions in Equations 31-38 are substituted into the perturbation equations

13-16. All terms with common exponential factors are grouped together. The simplest

nonlinear theory is obtained by considering only those terms with Fourier exponents limited

by:

-2 < n, l _< 2.

With this restriction, it is only appropriate to consider terms in the amplitude expansions

(Equation 32) with m = 0,1 and k = 0,1. Larger values of m or k give higher order

contributions which should not be considered at this degree of truncation. In each group

with common exponential factors, all terms with common powers of A and B are collected.

This tedious process of expanding the solutions, substituting into the equations and collecting

terms with common factors of exponentials and amplitude parameters is done automatically

using the symbolic manipulator Macsyma. The case n = m = l = k = 0 just represents the

basic flow which has already been subtracted out. A sequence of 12 systems of equations

remains. Each system contains four equations and four unknown expansion coefficients

which are functions of r. A description of each of the systems is summarized in Table 1.

The equation system number indicates the order in which we chose to solve the equations.

To ensure that all information needed to solve any system has already been computed, all

systems of lower order in the amplitude parameters should be solved before those of higher

order.

The first two equation systems are eigenproblems of the form:

L,_,,_l,,0,1,0 = + (n(ao,o- igo,o) + l(bo,o- iho,o)) Mall,,0,1,0 (39)

where:

[ a,"''"'k(r) )
\

(40)



Eq. Sys. No.

1

2

3

4

5

6

Order

A

B

A 2

B 2

A 2

B 2

7 AB

8 AB

9 A a

10 B a

11 AB 2

12 A2B

n m 1 k

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2 0 0 0

0 0 2 0

1 0 1 0

1 0 -1 0

1 1 0 0

0 0 1 1
1 0 0 1

0 1 1 0

Description

Linear TS wave

Linear Dean vortex

Mean flow distortion from TS

Mean flow distortion from Dean

TS harmonic

Dean harmonic

TS - Dean cross harmonic

TS - Dean cross harmonic

Self-correction to TS

Self-correction to Dean

Dean correction to TS

TS correction to Dean

Table 1: Summary of equation systems

and

-1 0 0 0
M= 0 -1 0 0 (41)

0 0 -1 0

0 0 0 0

For the eigenproblems, the indices n and l may only have the values 0 and 1 with the

constraint n + l = 1. The elements of the operator L,,z are given in Appendix A. The

solution of the eigenproblem determines the eigenvalues (we consider here only the least

stable ones), ao,o + igo,o and bo,o + iho,o. The eigenvectors _h,o,o,o(r) and _lo,o,l,o(r) are known

to within a constant factor. The normalizations in Equations 23 and 28 are used for the two

eigenvectors. The real parts of the eigenvalues are the zeroth order Landau coefficients.

Equation systems 3 and 4 represent the mean flow distortion caused by the TS and

Dean disturbances respectively. For this case, n = I = 0 and the operator Lnj can be greatly

simplified. Here we consider only the case where either m or k equals 1, while the other equals

0. Earlier we specified that the mean pressure gradient is constant, /5°J'°'° = /3°'°'°'l = 0.

Analysis indicates that d, °'1'°'° = d, °'°'°J = d, °J'°'° = d, °'°'°'l = 0. The remaining equation

can be written as:

1 \ ^ O,m,O,k 1 d .^ 0,rn,0,k 1 d_ ^ 0,rn,0,k
(2mao,o + 2kbo,o + o-;'l_)Uo - -'.f_'g;_o - l_uo =

ikp(do°,°,-1,°d °,°,l, ° _ do°,°,l,°d °,°,-1, °)

_ (_0-m,o,-k,o_ -,,o,k,0+ d0",°,k,°_,-_',°,-k,°)/r
t d t ^ -rn,O,-k,O'_ ^ m,O,k,O d [ ^ rn,O,k,O\ ^ -rn,0,-k,0_

- t_Uo )u, + _kUo )u, ).

An interesting restriction to the theory results from Equation 42.

homogeneous problem:

1 1 de 1 d2¢ _ 0
(2mao,o + 2kbo,o + r-3--_Re)¢ rRe dr Re dr 2

(42)

Consider the associated
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with boundary conditions:

Apply the transformation:

¢ = 0 at r ---- ri, ro.

r2 = _2/(-(2mao,o + 2kbo,o)Re)

to the homogeneous problem and divide by (2rna0,0 + 2kb0,0) to obtain:

with

where

(1- )¢+ = o

¢ = 0 at _ = _, _o

¢_= r_/(-(2maoo + 2kboo)Re)
_ = r2o/(-(2mao,o q-2kbo,o)Re)

(43)

Equation 43 is the Bessel equation of order 1. If the points _ and _o correspond to zeros of

the appropriate Bessel function, then this free eigenmode can contribute an arbitrarily large

component to the solution of the forced problem. Moreover, a numerically ill-conditioned

system arises whenever _ and _o are both in the neighborhood of zeros of the Bessel function.

A sure way to prevent this problem is to require both a0,0 and b0,0 to be non-negative. This

essentially restricts the application of the theory to those regimes in Reynolds number -

wavenumber space where both the TS and Dean disturbances are unstable. In this regime,

solving for da °'1'°'° and de °'°'°'1 is straightforward.

The equation systems 5-12 are all of the form:

(L, d - (2ma0,0 + In]a0,0 - ingo,o + 2kb0,0 + [/Ibo,0 - ilho,o)M)_ln,,_,,,k = R,, (44)

where R, is the right hand side vector of the s equation system. The right hand side vectors

consist of nonlinear combinations of the solutions obtained at lower order. The elements of

the right hand side vectors are given explicitly in the Appendix B. Some important consid-

erations in solving the equations are given below. (Many of these issues are addressed in

detail by Herbert [11] for the case of a single 2D TS wave in a straight channel.)

With the restriction that a0,0 and b0,o be non-negative, the homogeneous problems asso-

ciated with Equation 44 are unlikely to have free modes. The occurrence of any free modes

for Dean harmonics would require that (2k ÷ 1)bo,o be an eigenvalue for the homogeneous

problem with wavenumber lfl. (Note that ho,o = 0.) Such an unlikely coincidence would

lead to obviously nonsensical results of the numerical solution. TS harmonics and crossed

TS-Dean harmonics would be even less likely to have free modes because both real and

imaginary parts of the eigenvalue would need to match.



Equation systems5-8 for the various harmonicsrequire numerically solving a sequence
of linear ordinary differential equation systems. In the caseof Dean disturbances, it is
possible that the harmonic of an unstable mode is also in the unstable regime. When
this happens,it violates the assumptionthat all of the higher harmonicsare forced by the
primary disturbances. While numerical results can be obtained for suchcases,the results
are meaninglesssince the harmonic can grow on its own and is not simply forced by the
fundamental.

Equation systems9-12 define the correctionsto the fundamental TS and Dean distur-
bancesand allow usto calculate the Landau coefficients al,0, b0,1, a0,1, and bl,0 respectively.

It is in the solution of these terms that the method developed by Herbert [10, 11] differs

significantly from the standard Stuart [7] and Watson [8] approach.

The right hand side vectors R, for s = 9-12 can be rewritten as:

R, = Rio + _,M_l,,,0,,,o (45)

where:

I_9 ---- al,o -- igi.o

_;iO = bo,1 -iho,1

Ell : ao, 1 -- "igo,1

_i2 = bi.o-ihi,0.

The correspondence between the index s and the indices n, m, l, and k is given in Table 1.

Note that these equations have either n = 1, l = 0, or n = 0, I = 1. No other combinations

of n and l appear. The solution vectors _tn,,,,,t,k for these equation systems are the sums of

particular solution vectors, hence it is useful to write:

= + (46)

where:

= = o.: =
Substitution of Equations 45 and 46 into 44 leads to:

(47)

(Ln., (2mao,o + n(ao,o igo,o) + 2kbo,o + l(bo,o iho,o)) M) o _- - - _,X,.,,,,,,,,_- _;.M_l.,o,,,o (48)

(Ln,, - (2mao,o + n(ao,o - igo,o) + 2kbo,o + l(bo,o - iho.o)) M) X,,,,_,z,kl = R:. (49)

Recognizing that

(L,,,,- (n(ao,o - igo,o) + l(bo,o - iho,o)) M)_l,_,o,,,o = 0 (50)

when n = 1, l = 0 or n = 0, I = 1, one finds by inspection of Equation 48:

(2mao,o + 2kbo,0) 0 _-- Xn,rn,l,k -- qn,o,t,O (51)

10



or

ox.,_,,,_ = -_.,o,,,o/(2mao,o+ 2kbo,o). (S2)

It is straightforward to solve Equation 49 to obtain iXn,,.,t,k" Substituting Equation 52 into

Equation 46 gives:

= Xn,,,_,t,k(r) -- _./(2mao,o + 2kbo,o)Cln,o,,,o(r). (53)

In order to determine the Landau coefficients to, we use the normalizations in Equations

22 and 27. Together with the expansions in Equations 30 - 33 they require that:

and

oc oo

m=O k=O

oo oo

[_.°'1(r¢, t)[ = }_], _] A2"nB_+id.°"n"'k(r_)} = B(t).
m=0 k=0

We already used Equations 23 and 28 to set

(54)

(55)

_)'°'°'°(r D = 1

and

_r°'°'l'°(r_)= 1

hence for the normalization to be correct at all orders of approximation,

and

_rl'm'O'k(r¢) -_ 0 for all m, k > 0

_r0'm'l'k(rc) = 0 for all m, k > 0.

(56)

(57)

The conditions from Equations 56 and 57 can now be used to determine _.. Let the

components of vector 1X,_,,_,t,k be written as:

(or)_Y81
Xn,m,l,k -_

7
The conditions in Equations 56 and 57 are applied in Equation 53 to require:

w.(r_) - _./(2mao,o + 2kbo,o) _.,o,,,O(ro) = 0.

Since dr"'°J'°(r_) = 1,

Hence the Landau coefficients _o are determined.

be found by substitution back into Equation 46.

(58)

(59)

_. = _,(_)(2m_o,o+ _.kbo,o). (60)

The correction to the fundamentals can

11



E. Numerical Considerations

All of the equation systems are solved using a Chebyshev collocation procedure [13]. The

left-hand side operators for all of the systems (except the mean flow corrections) are similar

and are generated with a single subroutine. The operators for the mean flow corrections need

to ensure that only streamwise velocity perturbations are nonzero. This was most easily done

using a separate subroutine. The right-hand side vectors were sufficiently different from each

other that it was more convenient to use Macsyma to write individual subroutines for each of

the equation systems. The two eigenproblems are solved first with a global solver to obtain

the eigenvalue spectrum. The eigenvectors associated with the most unstable eigenvalue are

obtained with a local iterative procedure. The mean flow needs to be computed using 128

bit accuracy for the very weak curvatures that we used. We found that 65 collocation points

across the channel (including the endpoints) produced Landau coefficients which agreed to

at least 3 digits with those obtained with 97 collocation points. All results presented here

were obtained using 65 points.

F. Comparison of Approaches

Here we compare some aspects of the current approach with that of DHZ. Since they do not

use the normalizations in Equations 22 and 27, they do not have the conditions of Equations

56 and 57 and hence need some alternative constraint to obtain Landau coefficients. They

use orthogonality conditions to obtain the Landau coefficients when both Dean and TS

disturbances are on their respective neutral stability curves. Near the neutral stability

curves, the linear growth rates vary linearly with Reynolds number deviation off of the

curves. Deviations from the critical curvature parameter, At, are also assumed to affect the

linear growth rates linearly. They find that the effect on the coefficients of the nonlinear

terms in the Landau equations are independent of deviations away from the neutral Reynolds
numbers and critical curvature to the order considered.

While the two approaches involve the same type of expansion, the different ways of solving

for the Landau coefficients makes each appealing for obtaining certain types of information.

Below we discuss some of the restrictions and advantages of each method.

Both theories assume that the fundamental disturbances are the major structures in the

flow and that none of their harmonics or product wavevectors are linearly unstable. These

secondary waves must be stable even in the presence of finite amplitude primary waves.

Both expansions are only valid for small amplitude disturbances. Exactly how small is

not known a priori. In order for the expansions to be valid for large times, it is necessary

for the linear growth rates to be "small". Small linear growth rates exist near the neutral

stability curves. In this sense, the restriction of being near the neutral stability curves with

the DHZ approach is similar to the requirement in the present approach that the amplitudes

be small. The present approach might be somewhat more accurate if one were not interested

12



in long-time valid solutions; e.g. if one wanted only to know the first effect of nonlinearity

on the strength of an instability. In such a case, the present amplitude expansion could be

valid in cases with large linear growth rates as long as the amplitudes were still sufficiently

small.

The theory developed by DHZ describes the weakly nonlinear behavior of the flow for a

range of Reynolds number and curvature ratio perturbations away from the neutrally stable

conditions. In particular, the perturbations could be taken into the linearly stable regime;

there the Herbert approach may fail due to a resonance. The theory of DHZ does not have

this problem since all of their constants are computed right on the neutral stability curves.

On the other hand, the present theory may be applied to any combination of wavenumbers

and Reynolds numbers, while the DHZ theory in its current form works only when the

azimuthal and axial wavenumbers correspond to neutrally stable disturbances at the same

Reynolds number.

The derivation and solution of the equations of the present theory are somewhat simpler

than those of DHZ since the present theory does not require the use of adjoint eigenfunctions

and the orthogonality condition. Additionally, because the amplitude function is uniquely

defined in terms of the fundamental, the change in shape of the fundamental disturbance can

be computed. This allows the present theory to be extended to higher orders unambiguously.

Herbert [10] presents seven Landau constants for plane Poiseuille flow using this approach.

With modified versions of the same procedure used here, Singer, Meyer, and Kleiser [14] and

Ng, Singer, Henningson, and Alfredsson [15] compute multiple Landau coefficients for the

development of vortices in a three-dimensional boundary layer and a rotating channel flow,

respectively. Unfortunately, the derivation of the equations for the higher Landau coefficients

for the present interacting wave case is too complicated to be handled within the framework

of our current Macsyma program and is not done here.

III. Results

Most of our results are at the critical curvature parameter I_ since this is where we expect

the effects of the interaction to be greatest. Near the critical curvature parameter, A =

),c - 2.179 × 10 -5, we found that small changes in the curvature parameter do not change

the qualitative properties of the results. To orient the reader, Figures 2 and 3 are neutral

stability curves for the TS and Dean waves respectively at the critical curvature. Regions

where a0,0 and b0,0 are positive represent the linearly unstable areas. All of our results will

be for points that are in the unstable regime of both the TS and Dean disturbances.

Figures 4 and 5 illustrate the zero contours of the Landau coefficients al,o and b0,1 in

regions where the TS and Dean disturbances are linearly unstable, respectively. These

coefficients represent the self-interaction effects of the TS and Dean disturbances. Positive

values indicate that increased amplitude exasperates the instability. Negative values are

necessary for an individual disturbance to reach a saturation state in the linearly unstable
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region. The TS waveshave negative self-interaction coefficientsnear the lower branch of
the TS neutral stability curve, but positive valueselsewhere.At low Reynoldsnumbers,the
Deandisturbanceshavenegativeself-interactioncoefficientsfor all wavenumbers_; at higher
Reynolds numbers the self-interaction coefficient is positive in the middle of the unstable
region.

Figures 6 and 7 indicate the effect that interaction hason the disturbances. In both of
these figures, at a given Reynolds number, the right and left sides of the rectanglebound
the streamwisewavenumberrange in which individual 2D TS wavesare linearly unstable.
Similarly, for eachReynoldsnumber, the top and bottom sidesof the rectangle bound the
spanwisewavenumberrangein which Deandisturbancesare linearly unstable . In Figure 6,
positive valuesof a0,1 indicate that the Dean disturbance has a destabilizing effect on the

TS wave. This occurs primarily in the upper right hand corner of the unstable rectangle,

though at high Reynolds numbers, there is also a small region of positive a0,1 in the lower left

corner. Where a0,1 is positive in the upper right corner, the TS self-interaction coefficient

al.0 is also positive, so the destabilizing effect of a0.1 here exists when the TS wave by

itself is already quite unstable. The Dean disturbance generally has a stabilizing effect on

the TS waves at low Reynolds numbers_ but as the Reynolds number increases, the Dean

vortex has a destabilizing influence over a greater portion of the domain. The corresponding

results for bl,o, the effect of the TS wave on the Dean mode, are illustrated in Figure 7.

Low wavenumber Dean disturbances tend to be destabilized by high wavenumber TS waves;

however the fact that the harmonic of the Dean is also unstable in these cases invalidates

the application of the theory here. In no case does the theory indicate that TS and Dean

disturbances simultaneously destabilize each other. Since the coefficient, bl,o is positive over

progressively smaller portions of the domain with increasing Reynolds number, it is unlikely

that simultaneous destabilization occurs, even at very high Reynolds numbers. In most of the

cases studied, the weakly nonlinear interaction tends to stabilize both modes. In a physical

experiment, multiple three-dimensional modes can interact, perhaps forming a secondary

instability which will eventually grow and lead to transition. A multi-wave interaction and

subsequent instability is beyond the scope of the present theory.

For several representative sets of parameters, we examine our results in the context of

nonlinear autonomous systems. Recall that A measures the amplitude of the TS wave and

B corresponds to the Dean disturbance. Equations 35 and 36 admit four possible steady

state solutions: the trivial solution, finite A with B = 0, finite B with A = 0, and a

combined state with finite values of both A and B. Each of these states is a critical point

and may be classified according to the local behavior of the solutions in the vicinity of the

point. In the phase plane (A-B), stable nodes are identified as those for which solution

trajectories near the point converge to the node, unstable nodes are critical points from

which Solution trajectories diverge, and saddle points are those points for which a finite

number of trajectories converge to the point while all others diverge.

Several trajectories are illustrated in figure 8 for the case where Re = 6291.67, _ =

2.189 x 10 -s, a = 74257, and fl = 4.51. These parameters were used extensively by Singer
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and Zang [9] in their direct numerical simulations. In the figure, the small squares indicate

the various initial conditions. An explicit fourth order Runge-Kutta differencing scheme was

used to trace the subsequent trajectories. The filled circles show the two stable equilibrium

points at A = 3.8 x 10 .3 , B = 0, and A = 0, B = 7.0 x 10 -S respectively. Trajectories

initiated near either of these points tend to converge to the respective nodes. The open

circles represent unstable nodes and saddle points. Two initial conditions started quite close

to the saddle point at A = 2.4 x 10 -4, B = 3.5 x 10 -S go to different stable equilibrium

states. The flow is especially sensitive to small changes near the saddle point. The unstable

node at the origin is the endpoint of a semi-infinite curve which goes through the saddle

point and separates the region of attraction of the two stable nodes.

Figure 9 illustrates a typical trajectory for the case with Re = 4000, _ = 2.179 x 10 -s,

a = 96300, and fl = 1.55. In this case there are three critical points. The origin and A = 0,

B = 4.69 x 10 -s are both unstable nodes. Trajectories that start in the vicinity of these

points move away from them. The point A = 3.8 x 10 -4, B = 6.1 x 10 -s is a stable spiral

node. Trajectories slowly spiral towards this point. There is no conventional equilibrium

point with B = 0 and A _ 0. Trajectories initiated along this line will tend towards A _ oo.

In the next case, the flow parameters are Re = 5000, A = 2.179 x 10 -s, a = 100000,

and/3 = 2.0. In Figure 10 pairs of trajectories with initial values of A differing by 0.001 are

plotted for various initial values of B. In many ways, the qualitative behaviour seen here is

quite similar to that illustrated in Figure 8. The origin is an unstable node, there is a saddle

point with nonzero A and B, and there is a stable node with nonzero B but A = 0. A semi-

infinite curve extends from the origin, through the saddle point and separates the domain

into a region which is attracted to the stable node with A = 0, B = 7.7 x 10 .4 and a region

in which A --* c_. This shows how strong the nonlinear interaction can be. Without a Dean

disturbance, the TS wave has unbounded growth; however, the inclusion of an additional

disturbance at sufficiently large amplitude can completely stabilize the otherwise growing
TS wave.

We conclude this section by comparing our Landau coefficients with those of DHZ for

two specific cases. Tables 2 and 3 show the Landau constants from the current theory

and from the theory of DHZ after conversion to the current nondimensionalizations. The

quantities a0,0 and b0,o from DHZ were taken directly from their linear eigenvalue solver,

rather than by perturbing away from the neutral stability curve. Except for the coefficient

bl,0, which represents the effect of the TS wave on the Dean disturbance, the coefficients

show satisfactory agreement. Singer and Zang [9] suggested that a yet unknown numerical

problem in DHZ led to erroneous values of bl,0. The large discrepancy here with respect to

bl,0 adds support to that suggestion.
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ao,o

1.21 x I0 -4
al,O aO,l

-95000

bo,o

3.97 x i0-s

bl,0

-482

b0,1

-7640Current -8.25

DHZ 1.20 x 10-4 -8.85 -i01000 3.97 x i0-_ 1.23 x I0_ -8470

Table 2: Comparison of Landau Coefficients for Re = 6291.67, _ = 2.189 x 10 -_, a = 74257,

and/3 = 4.508

ao,0 al,0 a0,1 bo,0 bl,0 b0,1

Current 1.18 x 10 -s 3.97 -46600 7.66 x 10 -6 -233 -3340

DHZ 1.33 x 10 -s 3.97 -46900 7.66 x 10 -6 1.44 -3390

Table 3: Comparison of Landau Coefficients for Re = 4175, A = 2.179 x 10 -s, a = 86800,

and _ = 2.76

IV. Comparison with Direct Numerical Simulation

We use direct numerical simulations (DNS) of the full Navier-Stokes equations to determine

the usefulness of the weakly nonlinear theory. The numerical simulation code [9] uses a curved

channel variant of the method described by Zang and Hussaini [16] with the nonlinear terms

in skew-symmetric form [17]. Table 4 reports the complex growth rates (a0,o-igo,o) obtained

with a spectral linear stability code, and the results of DNS with two different time steps.

Table 5 provides details of the parameters for the different cases. All codes used 65 points

across the channel. Data from the DNS were obtained after 100 time steps. Using a time

step A_ = 0.0001, the complex growth rates differ from those predicted by linear theory by

less than 1 part in 104. In the simulations reported below, we are primarily concerned with

long-time trends and final steady-state solutions, hence, the additional time advancement

errors associated with the larger time step, At = 0.01, are not expected to be important.

The larger time step gave a maximum CFL number of 0.01, still well within the numerically

stable regime. In one case described below, the time step was changed from At = 0.01 to

At = 0.0001 after the steady state solution was reached. There was no evidence that the

solution was changing, even after 20000 time steps. Additional details of code validation

studies in both the linear and nonlinear regimes are given by Singer and Zang [9].

Case

1

2

3

4

5

6

Linear Stability DNS A_ = 0.01 DNS A_ = 0.0001

(3.1189,-4236.9) '3.0736,-4241.8 (3.1185,-4236.9)

6.6331 6.6336 6.6335

(-138.2126,-16214.84) (-138.2154,-16214.84) (-138.2126,-16214.84)

(86.4287, -2709.11) (86.4204, --2709.44) (86.4291, --2709.14)

21.5591 21.5599 21.5599

(-90.61188,.-12993.29) -90.61307,-12993.3) (-90.61188, -12993.34)

Table 4: Comparison of Complex Growth Rates (all values multiplied by 104 )

16



C&se Re

1 5000

2 5000

3 5000

4 i0000

5 i0000

6 i0000

100000 0

0 2.0

i00000 2.0

80000 0

0 3.0

80000 2.0

Table 5: Specification of parameters for cases in Table 4

Sufficient spatial resolution in the simulation can be ensured using the guideline suggested

by Krist and Zang [18]. They suggest that "grid refinement is needed in any direction when

the tail of the energy spectrum reaches 10 -s of the low-frequency value." This guarantees

that truncation errors in the velocity will be less than 0.01%. Such detailed resolution is

not necessary for the purposes of these simulations. We found that the tail of the energy

spectrum could be as much as 10 -4 of the low frequency value and still provide similar results

to those obtained when the Krist and Zang guideline was strictly followed. Our relative

insensitivity to resolution is attributed to the rather minor role that small scales play at this

stage of transition. In what follows, using M Chebyshev modes implies that there are M + 1

Chebyshev collocation points across the channel; using N Fourier modes implies that there

are N collocation points in the given direction so that the Fourier wavenumbers, n, have a

range of -N/2 + 1 < nL/(2_r) < g/2 - 1, where L is the length of the domain. In most

of the simulations with Re = 6291.67, 48 Chebyshev modes are used to resolve the flow in

the wall-normal direction, though in the simulations with Re = 5000, 64 modes are used.

In the streamwise and spanwise directions, 2-12 Fourier modes are used, depending on the

purpose of the given simulation. The code is structured such that at least 2 modes must

be used in each direction. In cases where no TS mode is included, 2 modes are used in the

streamwise direction. Similarly, where no Dean mode is included, 2 modes are used in the

spanwise direction.

The initial disturbances for the direct numerical simulations contain only contributions

from the linear solutions. The distortion of the mean flow and higher harmonic contributions

are not included initially; they develop as the simulation progresses.

Direct numerical simulation is used to study two of the three flows described in the

previous section. The case in which there is a stable spiral mode is not simulated because the

time required for a single orbit is so large that the computational cost would be prohibitive.

We first look at the case with Re = 6291.67, A = 2.189 × 10 -s, a = 74257, and/3 = 4.51.

Four simulations were performed with different initial conditions; the first contained only

a Dean vortex, the second contained only a TS wave, the last two contained both types of

disturbances.

When only a Dean disturbance is included in the initial conditions, the weakly nonlinear
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theory suggeststhat an equilibrium state with B = 7.0 x 10 -s develops. This corresponds

to a maximum streamwise velocity perturbation of 5.84% of _--z. We initiated the simulation

with the Dean eigenfunction obtained from linear stability theory with an initial strength,

B = 6.95 × 10 -s. Twelve Fourier modes were used in the spanwise direction, though half

the modes had energies which were more than 8 orders of magnitude less than the primary

mode. These higher order modes had a negligible effect on the simulation. At the start of

the simulation, the instantaneous growth rate of the Dean disturbance was approximately

equal to its linear value. At the time, t -- 34845, the magnitude of the instantaneous growth

rate had decreased by more than a factor of 100 and the simulation was stopped with

t3 = 6.7 × 10 -5. In this case, the difference between the equilibrium state predicted by the

weakly nonlinear theory and that obtained from the DNS is less that 5% and is considered

quite good.

With only a TS wave, we expect to obtain a TS equilibrium state with A = 3.8 x 10 -3,

resulting in a maximum streamwise disturbance of 1.94% of _'z. The simulation was initiated

with A = 3.5 x10 -3 and was stopped at atimet = 11367. At this time, A = 4.0 x 10 -3 .

Figure 11 illustrates the time evolution of the amplitude of the wave. The dashed line

shows the equilibrium amplitude predicted by our weakly nonlinear theory. Note that as the

amplitude approaches its equilibrium value, the growth rate decreases. Over 480 periods of

the TS wave were simulated for the data presented in Figure 11. The difference between

the equilibrium amplitude predicted by the weakly nonlinear theory and that obtain by the

DNS is about 10%, which we considered acceptable agreement. The 12 Fourier modes used

in the streamwise direction were sufficient for an 8 order of magnitude drop in the energy.

We performed two simulations with both Dean and TS perturbations included in the

initial conditions. In these, we used 6 modes in both the streamwise and spanwise directions

and 48 Chebyshev modes in the wall-normal direction. In these simulations, the spanwise

resolution was only sufficient to allow an energy drop of 10 s, while the streamwise resolution

allowed as little as a 104 drop in the energy. This would lead us to suspect errors in the

velocity on the order of 1%. To determine whether this could lead to erroneous physical

results, we re-simulated our case which had the largest velocity perturbations using 12 modes

in the streamwise and spanwise directions and 64 modes in the wall-normal direction. The

energy spectrum in the highly resolved case exhibited an energy drop of 109 in the streamwise

direction and 1014 in the spanwise direction. The evolution of the disturbance amplitudes

was the same as that observed in the less resolved case. In both cases we initiated the Dean

disturbances with B = 6.95 x 10 -_. This value is slightly less than its equilibrium amplitude

which we obtained above.

In the first case, the initial strength of the TS disturbance was A = 2.94 × 10 -4, approx-

imately 1/13 its predicted equilibrium value. The long time behavior of this case required

12 Fourier modes in the spanwise direction. The amplitude evolution of the disturbances is

illustrated in Figure 12a. Here we plot the amplitude of both the Dean and TS disturbances,

normalized by their respective amplitudes at time t = 0. The Dean disturbance develops to-

wards its equilibrium state while the TS disturbance decays. In Figure 12b the predictions of
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the weakly nonlinear theory areplotted. The agreementbetweenthe theoretical predictions
and the DNS results is very good.

In the second case, the initial strength of the TS disturbance was A = 2.94 x 10 -3, ap-

proximately 10/13 its predicted equilibrium value. Figure 13a shows the amplitude histories

for this case. Unlike the previous situation, here it is the TS wave which grows towards its

equilibrium value and the Dean disturbance which experiences rapid decay. The predictions

of our weakly nonlinear theory are plotted in Figure 13b. Again the agreement between

theory and simulation is quite good.

The next flow which we investigated with numerical simulations corresponds to the last

case studied in the previous section. Here Re = 5000, A = A= = 2.179 x 10 -s, ¢z = 100000

and/3 = 2.0. Simulations were performed with a TS wave only, a Dean vortex only, and a

combination of both disturbances.

The weakly nonlinear theory predicts that a TS wave alone in this flow becomes more

unstable as its amplitude increases since both ao, o and aa,o are positive. A numerical simu-

lation initiated with A = 0.002 and B = 0 confirmed that the amplitude A increased with

increasing growth rate, at least until A = 0.0048 when the simulation was terminated. Six

Fourier modes were used in the streamwise direction.

A Dean vortex alone in this flow is predicted to reach an equilibrium state with t3 = 7.7 x

10 -4. This value of t3 corresponds to a maximum streamwise velocity perturbation which is

62.4% of the undisturbed laminar bulk velocity. An equilibrium state with B = 4.3 x 10-4

was obtained in the direct numerical simulations. Twelve Fourier modes were used in the

spanwise direction. The difference between the DNS result and that of the weakly nonlinear

theory is not unexpected since the disturbance amplitudes are so large.

One final simulation was performed with the initial values of A and t3 chosen as A = 0.002

and B = 0.00065. In this case, the weakly nonlinear theory predicts that the TS wave will

decay, leaving only a Dean disturbance in the flow. The time evolutions of the TS and Dean

disturbances are plotted in Figure 14a through t = 500. Six Fourier modes were used in

the streamwise direction, twelve in the spanwise. At this time the spectral energy decay

in the spanwise modes is 10 s. Though the simulation was terminated before a steady-state

solution was reached, the prediction of the weakly nonlinear theory (plotted in Figure 14b is

qualitatively supported. After the initial transient, the TS wave decays rapidly. Considering

the large amplitude disturbances in the flow, the theory and the simulation agree well.

V. Conclusions

We have presented a weakly nonlinear theory to describe interactions between TS waves and

Dean vortices in curved channel flow. The approach used to calculate the Landau coefficients

is an extension of that developed by Herbert [10, 11]. This approach provides not only
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the Landau coefficients,but also the shape change of the fundamental disturbances with

amplitude. A standard Chebyshev collocation procedure is used to obtain numerical results.

We have restricted our study to very weakly curved channels, where the critical Reynolds

numbers for both TS and Dean disturbances are approximately equal. For low Reynolds

numbers the interaction effects are generally stabilizing to both types of disturbances. In

the case of high _eynolds numbers the theory predicts that the interaction can destabilize

the TS wave. Destabilization of the Dean vortex due to the TS wave occurs only for very

low wavenumber Dean disturbances.

Three different scenarios of TS-Dean interactions have been studied in detail. Phase

plane trajectories indicate the existence of stable and unstable critical points. Two cases

exhibit saddle point behaviour while the third has a stable spiral node.

Direct numerical simulations verify the predictions of the theory. When the amplitudes of

the disturbances are not too large, the direct numerical simulations and the weakly nonlinear

theory agree quite well. When the amplitudes of the disturbances are large (on the order of

60% of the centerline velocity), the simulations and the theory still qualitatively agree.

Comparison of our results with those of DHZ, who also developed a similar weakly non-

linear theory strongly suggest that DHZ have a numerical error in the computation of one

of their Landau coefficients.
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Appendix A APPENDICES

I. The Left Hand Side Operator L_,t

51,1

L2,1

Ln.z = | L3,1

\ L4,1
L1,2 L1, 3 L1'4 /

L2,2 L2,3 L2,4

L3,2 L3,3 L3,4

L4,2 L4,3 L4,4

LI,1 __ iotl_U0+ 1 (- r _ 12z_+ (n2ot_+ 1)/r:

L1,2 = _2 Ue +
2inot

r r21_e

51'3 = 0

d
51, 4 = --

dr

L2,1 _ dUo + Uo 2inot

dr r r2 t:_e

1 d d 2 )r dr _rr 2_

1(= iot_-uer+ _ l_z_+ (_ot_ +L2,2 1)/r 2

L _'3 : 0

.not
5_,4 = _--

r

L 3'1 = 0

L 3'2 ---- 0

5_,_ = _ot_Uer+ _ l'_' + n'ot'/r2

5 3,4 = il_
1 d

54,1
r dr

L4,2 .not

r

L 4'3 = iIfl

L 4'4 = 0

1 d d 2 )r dr dr 2'

1 d d 2 )r dr dr 2
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II. The Right Hand Side Vectors Rs

by:

R.= R'_
R,_
R,

Equation system 5 corresponds to the TS harmonic. Its right hand side vector is given

R_ = -isSo 1'°'°'°5,1'°'°'°/_

-lt- (501,0,0,0)2/r

d lOOO lO0O

d-;(_,,, )5,,,,
R,_ = _i_(52ooo)2/_

-- 581'0'0'05 1,0,0,0/F,

d ^ 1,ooo lOOO

R 3 -- iO_d 1'0'0'05 1'0'0'0It-- -- 8 = /

+5 1,o,o,od(_ 1,o,o,o)

R_ = 0

by:
Equation system 6 corresponds to the Dean harmonic. Its right hand side vector is given

R 1 _ i_,z o,o, 1,0_,r0,0,1,0

+(5_°,°,',°)2/r
d ^ o,o,i,o ^ ooi o--(u _u ' ' '

dr k r ) r

R 2 = --i_Se0,0,1,05z0,0,1, o

_5eo,o,l,O5o,o,l,O/_

d o,o,I,O o o 10

d_(5, )5, ,,,
R_ = _i_(_o,o,1,0)2

^ 0010 d ^ 0010
-'_'-'U,' ' ' "U, ' ' ', _(, )

R_ = 0

Equation system 7 corresponds to the product of the TS and Dean fundamentals. Its

right hand side vector is given by:

R_ = -iaae°'°'l'°a, l'°'°'°/r
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_ i/_ o,o,l,O_zl,o,o,o

+2_1e°,°,1,°_/el,°,°,°/r

_ (d(_zr °,°,l,°)_/r 1,°,°,° + ff---__(_1,°,°,°)zZr°,°,l,°)

R_ = -ic_e °'°'l'°_el'°'°'°/r

_ i/_oo,o,l,OzZ1,o,o,o

-(_e°'°'l,°_, 1'°,°,° + _el'°'°,hZ,°'°'l'°)/r

d O,OLO lOOO d ^ lO,OO OOlO
dr L e )-t_ + dr J J

R) = -into °'°'1'°_,1'°'°'°/r

_il3dz°,°,l,° d l,°,°, °

d ^oolo ^xooo d ^lO,OO ^oolo
-(d--;(u,''')ur'''+ __(u,'')u,''')aT"

Equation system 8 corresponds to the product of the TS fundamental and the complex

conjugate of the Dean fundamental. Its right hand side vector is given by:

R_ _iazZeo,o,-1,Og, l,O,O,O/r

+i_a o,o,-1,o_ 1,o,o,o

+ 2 dao,°,-1,o z_el,o,o,O/ r

d oo _,o _,ooo d _,oo,o oo _o
-(_(_,,,-),_,,,+_(,z,, ),z,,,-,)

_/a_eo,o,-1,O_el,O,O,O/r

+i_de°,°,-1,Odzl,O,O, o

_(_eo,o,-,,o_,._,o,o,o+ _;,o,o,o_,.o,o,-,,o)/,.
d oo io Iooo d i,o,o,o o,o 1o

-(_(_' ,-, ),_,.,,, + _(_ )_,. ,-, )
_ia_£eo,o, -_,o_zl,o,o,o/r

+ifl_£.o,o,-_,Odzl,O,O,O

_(dr(U ,_d ^oo, ,,O)u_,,,+^1°°° _,d(d_'°'°'°)_/°'°'-_'° )

0

Equation system 9 corresponds to the self correction of the TS fundamental. Its right

hand side vector is given by:

= _ia(2_o-,,o,o,oa_,o,o, o + _°,',°,°_2,°,°,° _ _e_,o,o,oa-,,o,o,o)/_

+(2do-',°,°,°de_.°,°,°+ 2de°"'°'°de',°'°'°)/r

_(d(_,._,o,o,o)_,-_,o,o,o+ d(_,.-_,o,o,o)¢._,o,o,o
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-( al,o - igz,o )dz 1'°'°'°

R$ = 0

Equation system 10 corresponds to the self correction of the Dean fundamental. Its right

hand side vector is given by:

R]o = -_(2_.°'°'-"°¢ °'°'2'°+ _ o,o,o,,¢o,o,,,o_ _ o,o,.,o_o,o,-1,o)

+(2_o°,°,-',°_o°,°,_,° + 2_o°,°,°,'_o°,°,_,°)/r

-(d_(_,°.°,_,°)_,o,°,-_,°+ d_(_,°,°,-_,°)_,°,°,_,°

+_(_2,°,°,_)_2,°,I,°+ _(_2,°,_,°),_,°,°,°,_)

-(bo,1 - iho,1)_ o,o,_,o
R_o = -_(2_o°'°'_'°_. °'°'-1'° + _o°'°'1'°_.°'°'°'_- _o°'°'-1'°_. °'°''-'°)

-(do°,°,-_'°_,.°'°'_'°+ _o°,°,_,°_°,°,-1,°

+_oo,o,o,1_o,o,_,o+ _oo,o,_,o_o,o,o,_)/r

-(_r(_o°,°,-_,°)_,.°,°,_,°+ _(_o°,°,',°)_,.°,°,-_,°

+ _(,1o°,°,°,_)._,.°,°,_,°+ _(.ao°,°,_,°)_.,.°,°,°,_)

- (bo,z - iho,z )de °'°'1'°

R_o= -_,_(a.°'°'-l'°a.°'°'_'°+ ,_o,o,o,_a o,o,_,o)

_(_(_ o,o,_1,o)_,o,o,,,o+ _(_ o,o,,,o)_,o,o,-_,o

+_(_zo,o,o,_)_,.o,o,_,o+ _(a.o,o,_,o)_,.o,o,o,1)
--(bo, 1 -- iho, 1)_r 0'0'1'0
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R4o = 0

Equation system 11 corresponds to the correction of the TS fundamental by the Dean.

Its right hand side vector is given by:

Rh = -_,-.(_o°'°'-_,o__,o,_,o+ aoo,o,o,__1,o,o,o+ _oo,o,_,o_,o,- _,o)/,.
+i,8(d,.o,o,-1,o_),o,l,o_ 4.o,o,l,o._),o,-1,o

+C),o,-_,o_o,oa,o_ _),oa,odo,o,-I,o)

+2(_s°'°,-_,°doI'°'I'°+ _e°,°,°,I_/6I,°,°,°+ ds°,°,1,°de1'°,-1,°)/r

- (d_(_/°,°,-I,°)_I,°,_,°+ J_(_L°,°,°,_)_L_,°,°,°

d ^ooio ^io zo+_(_ ,,,)_,,_,÷ _(_ 1,o,-1,o)_o,o,l,O

-( ao,1 - igo,1)_ l'°'°'°

R_ = -i_(_,°'°'-1'°_o1'°'1'°+ _e°'°'°'l_,_'°'°'°+ _,°'°'1'°,_,1'°'-1'°)/r

+i_(_/eo,o,-I,o_),o,I,o_ _eo,o,I,o_/),o,-I,o

+_el,o,-1,o_ o,o,l,o_ _,o,_,o_zo,o,-_,o)

_ (_o,o,-_,oc_,o,_,o+ _ o,o,o,__,o,o,o

+,d,_°,°,l.°d,. 1,°,-1,° + _/_'O'-_'O_rO'O'_'O

+.,;._,o,o,o_,.o,o,o,_+ _ _,o,_,o_o,o,-_,o)/r

-(_(_.o°,°,-_,°)_.,._,°,_,° + _(do°,°,°,_)_,Y°, °,°

+ _(_o°,°,_,°)_),°,-_,°+ _(_o_,°,-_,°)_°,°,_,°

+ _(,.,,d̂1,o,o,o),.,,.^o.o.o,1+ ,,.,-d(a'?'°'l'°)ao,o,-1,o)

__(tI.O,1 • \ ^ 1,0,0,0- zgo,z)us

R_, = -i_(d o,o,-1,o_,,O,l,O+ doo,o,o,ld.,,o,o,o+ _ o,o,l,Od ,,o,-,,O)ir

_(_(_ o,o,-1,o)a,.1,o,1,o + d(a,o,o,o,1)_,.1,o,o,o

d lo 1o ^ 001o+ (a o,o,l,o)a,.1,o,-1,o+ _(,;., ,-, )_,. ,,,

+_(a),o,o,o)_,.o,o,o,1+ _(a2,o,l,o)_,.o,o,-1,o)

_(ao,1 • x ^ 1,0,0,0- zgo,1)u_

R_I = 0

Equation system 12 corresponds to the correction of the Dean fundamental by the TS.

Its right hand side vector is given by:

RI_ - -io,( <_o-l'°'°'°d) '°'1'° + _,-z'°'l'°d,l'°'°'° - ,;ol'°'°'°d, -1'°'_'° + '1_o1'°'1'°'1_r-1'°'°'°)/_"
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R_2 = -ic,(_e-l'°'°'°_, I'°'1'° +

-q3(_Z1'°'_'%i) '°'°'° +

_(_( _ -1,o,o,o)_1,O,l,O
d o,o,i,o 0,1,0 0

+_(_, )_, ,+
d . ^ lOOO ^ -lOlO

-I- [21, ' ' ' ,_l ' _ '
--_r \ , _ Jl-

-( bl,o - ih l,o )_, °'°'1'°

R_ = 0

_i#(_-_,O,l,O_),o,o,o+ _ o,o,l,O_o,_,o,o+ _ 1,o,_,o_-i,o,o,o)
+2(_o-1'°'°,°_e 1,°,_,° + _e-l,°,_,°z_o 1,°,°,° + _e°'°'l,°_o°'l,°,°)/r

d ^ 1010 ^ 1000

-(d(a,-1,°,°,°)_,°,_,° + d,.(,_, ),

d d ^o_oo ^ooIo+ (d,.°'°'l'°)d.,.°'z'°'° 4.- d-.--;.(u,''')u,. '''

-( bl,o - ihl,O)_ °'°'1'°

-ifl(de-l'°'l'°dz l'°'°'° + de°'°'l'°dz °'l'°'° + del'°'l'°dz -1'°'°'°)

-(de-l'°'°'°d_ 1'°'1'° + d0-1'°'l'°d_ 1'°'°'°

+de°,°,l,°d, °,_,°,° + de°,1,°,°_,, °,°,1,°

@_,o1'O'O'Ot_r-1'0'1'O -I- l_81'0'l'0dr-l'0'0'0)/r

d ^ 1 ooo ^ IOl,O d ^ 1,O,lO ^ 1,o,oo

-r,--(a__'-'" "_'" + _( _'- ' )_" '
d o,o.1o O,l,Oo d OlOO OOlO

+_(u_ ' )_,- ' + _(ue''' )_,- '''

+ _rr(duê1,o,oo,)u,-^ 1,o1,,o+ a.,.d-_-(d1,o,_,o)d-x,o,o,o)

- ( bl,o - ih l,o ) d_ °'°'1'°

_.-1,O,l,O_),o,o,o_ _ 1,o,o,o_-1,O,l,O_ _ 1,O,l,O_-1,o,o,o)/r

_ o,o,l,O_o,i,o,o+ _),O,l,O_zl,O,O,O)

d ^ lOlO ^ lOOO
wfU-,,, _u ,,,

+dr_ • s r

_(a O,l,O,O)_io,o,1,o

d 1 0,I,0 ,, 1000

dr k z /-,. 1
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Figure 1: Curved channel flow geometry.
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Figure 2
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Figure 2: TS neutral stabilitycurve with )_= lc = 2.179 x 10-5.
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Fig ure 3
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Figure 3: Dean neutral stability curve with _ = ,_c = 2.179 x I0 -s.
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Figure 4
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Figure 4: Zero contour of al,o, the TS self-interaction coei_cient.

32



25

Figure 5
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Figure 5: Zero contour of bo,l,the Dean self-interactioncoei_cient.
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Figure 6
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Figure6: Zero contourofao,1,the e_ect ofthe Dean disturbanceon the TS disturbance.The

rectanglesrepresentthe range of a and/9 over which individualTS and Dean disturbances

are linearlyunstable at the given Reynolds number.
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Figure 7
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Figure 7: Zero contour of hi,0, the effect of the TS disturbance on the Dean disturbance. The

rectangles represent the range of a and/9 over which individual TS and Dean disturbances

are linearly unstable at the given Reynolds number.

35



Figure 8
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Figure 8: Trajectories in phase-space with R.e = 6291.67, A = 2.189 x i0 -s, a = 74257, and

/9 = 4.51. Squares represent initial conditions, filled circles represent stable critical points.

Open circles represent other critical points.
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Figure 9: Trajectories in pha_e-space with Re = 4000, A = 2.179 x 10 -5, a = 96300, and

= 1.55. Squares represent initial conditions, filled circles represent stable critical points.

Open circles represent other critical points.
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Figure 10: Trajectories in phase-space with Re = 5000, A = 2.179 x 10 -5, u = 100000, and

fl = 2.0. Squares represent initial conditions, filled circles represent stable critical points.

Open circles represent other critical points.
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